49 research outputs found

    Application of mean-shift clustering to Blood oxygen level dependent functional MRI activation detection

    Get PDF
    BACKGROUND: Functional magnetic resonance imaging (fMRI) analysis is commonly done with cross-correlation analysis (CCA) and the General Linear Model (GLM). Both CCA and GLM techniques, however, typically perform calculations on a per-voxel basis and do not consider relationships neighboring voxels may have. Clustered voxel analyses have then been developed to improve fMRI signal detections by taking advantages of relationships of neighboring voxels. Mean-shift clustering (MSC) is another technique which takes into account properties of neighboring voxels and can be considered for enhancing fMRI activation detection. METHODS: This study examines the adoption of MSC to fMRI analysis. MSC was applied to a Statistical Parameter Image generated with the CCA technique on both simulated and real fMRI data. The MSC technique was then compared with CCA and CCA plus cluster analysis. A range of kernel sizes were used to examine how the technique behaves. RESULTS: Receiver Operating Characteristic curves shows an improvement over CCA and Cluster analysis. False positive rates are lower with the proposed technique. MSC allows the use of a low intensity threshold and also does not require the use of a cluster size threshold, which improves detection of weak activations and highly focused activations. CONCLUSION: The proposed technique shows improved activation detection for both simulated and real Blood Oxygen Level Dependent fMRI data. More detailed studies are required to further develop the proposed technique

    Stimulation of Piezo1 by mechanical signals promotes bone anabolism

    Get PDF
    Mechanical loading, such as caused by exercise, stimulates bone formation by osteoblasts and increases bone strength, but the mechanisms are poorly understood. Osteocytes reside in bone matrix, sense changes in mechanical load, and produce signals that alter bone formation by osteoblasts. We report that the ion channel Piezo1 is required for changes in gene expression induced by fluid shear stress in cultured osteocytes and stimulation of Piezo1 by a small molecule agonist is sufficient to replicate the effects of fluid flow on osteocytes. Conditional deletion o

    The human red nucleus and lateral cerebellum in supporting roles for sensory information processing

    Get PDF
    A functional MRI study compared activation in the red nucleus to that in the lateral cerebellar dentate nucleus during passive and active tactile discrimination tasks. The study pursued recent neuroimaging results suggesting that the cerebellum may be more associated with sensory processing than with the control of movement for its own sake. Because the red nucleus interacts closely with the cerebellum, the possibility was examined that activity in red nucleus might also be driven by the requirement for tactile sensory processing with the fingers rather than by finger movement alone. The red and dentate nuclei were about 300% more active (a combination of activation areas and intensities) during passive (non‐motor) tactile stimulation when discrimination was required than when it was not. Thus, the red nucleus was activated by purely sensory stimuli even in the absence of the opportunity to coordinate finger movements or to use the sensory cues to guide movement. The red and dentate nuclei were about 70% more active during active tactile tasks when discrimination was required than when it was not (i.e., for simple finger movements alone). Thus, the red nucleus was most active when the fingers were being used for tactile sensory discrimination. In both the passive and active tactile tasks, the observed activation had a contralateralized pattern, with stronger activation in the left red nucleus and right dentate nucleus. Significant covariation was observed between activity in the red nucleus and the contralateral dentate during the discrimination tasks and no significant correlation between the red nucleus and the contralateral dentate activity was detected during the two non‐discrimination tasks. The observed interregional covariance and contralateralized activation patterns suggest strong functional connectivity during tactile discrimination tasks. Overall, the pattern of findings suggests that the activity in the red nucleus, as in the lateral cerebellum, is more driven by the requirements for sensory processing than by motor coordination per se

    Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks

    Get PDF
    Adult neurogenesis supports performance in many hippocampal dependent tasks. Considering the small number of adult-born neurons generated at any given time, it is surprising that this sparse population of cells can substantially influence behavior. Recent studies have demonstrated that heightened excitability and plasticity may be critical for the contribution of young adult-born cells for certain tasks. What is not well understood is how these unique biophysical and synaptic properties may translate to networks that support behavioral function. Here we employed a location discrimination task in mice while using optogenetics to transiently silence adult-born neurons at different ages. We discovered that adult-born neurons promote location discrimination during early stages of development but only if they undergo maturation during task acquisition. Silencing of young adult-born neurons also produced changes extending to the contralateral hippocampus, detectable by both electrophysiology and fMRI measurements, suggesting young neurons may modulate location discrimination through influences on bilateral hippocampal networks.United States. National Institutes of Health (1DP2NS082126)National Institute of Mental Health (U.S.) (5R00MH085944)United States. National Institutes of Health (R01-DA028299)United States. Defense Advanced Research Projects Agency (W911NF-10-0059)Pew Charitable TrustsAmerican Federation for Aging ResearchAlfred P. Sloan FoundationNational Institute of Mental Health (U.S.) (1R21MH109941

    Collective Behaviors Through Social Interactions in Bird Flocks

    No full text

    Complement activation contributes to perioperative neurocognitive disorders in mice

    No full text
    Abstract Background The complement system plays an important role in many neurological disorders. Complement modulation, including C3/C3a receptor signaling, shows promising therapeutic effects on cognition and neurodegeneration. Yet, the implications for this pathway in perioperative neurocognitive disorders (PND) are not well established. Here, we evaluated the possible role for C3/C3a receptor signaling after orthopedic surgery using an established mouse model of PND. Methods A stabilized tibial fracture surgery was performed in adult male C57BL/6 mice under general anesthesia and analgesia to induce PND-like behavior. Complement activation was assessed in the hippocampus and choroid plexus. Changes in hippocampal neuroinflammation, synapse numbers, choroidal blood-cerebrospinal fluid barrier (BCSFB) integrity, and hippocampal-dependent memory function were evaluated after surgery and treatment with a C3a receptor blocker. Results C3 levels and C3a receptor expression were specifically increased in hippocampal astrocytes and microglia after surgery. Surgery-induced neuroinflammation and synapse loss in the hippocampus were attenuated by C3a receptor blockade. Choroidal BCSFB dysfunction occurred 1 day after surgery and was attenuated by C3a receptor blockade. Administration of exogenous C3a exacerbated cognitive decline after surgery, whereas C3a receptor blockade improved hippocampal-dependent memory function. Conclusions Orthopedic surgery activates complement signaling. C3a receptor blockade may be therapeutically beneficial to attenuate neuroinflammation and PND
    corecore